Những câu hỏi liên quan
Đanh Fuck Boy :))
Xem chi tiết
Đanh Fuck Boy :))
31 tháng 5 2021 lúc 20:36

\(P=\frac{a^2}{\left(a+b\right)^2}+\frac{b^2}{\left(b+c\right)^2}+\frac{c}{4a}\)

\(P=\frac{1}{\left(1+\frac{b}{a}\right)^2}+\frac{1}{\left(1+\frac{c}{b}\right)}+\frac{c}{4a}\)

Ta đặt \(\frac{b}{a}=x;\frac{c}{b}=y\Rightarrow\frac{c}{a}=xy\)

\(P=\frac{1}{\left(1+x\right)^2}+\frac{1}{\left(1+y\right)^2}+\frac{xy}{4}\)

Lại có \(\frac{1}{\left(1+x\right)^2}+\frac{1}{\left(1+y\right)^2}\ge\frac{1}{xy+1}\)

Thật vậy, bđt trên tương đương với:

 \(\left(xy+1\right)\left[\left(1+x\right)^2+\left(1+y\right)^2\right]\ge\left(1+x\right)^2\left(1+y\right)^2\)

\(\Leftrightarrow\left(xy+1\right)\left(x^2+y^2+2x+2y+2\right)\ge\left(x^2+2x+1\right)\left(y^2+2y+1\right)\)

\(\Leftrightarrow x^2y+y^2x-x^2y^2-2xy+1\ge0\)

\(\Leftrightarrow xy\left(x-y\right)^2+\left(xy-1\right)^2\ge0\)luôn đúng

Suy ra: \(P\ge\frac{1}{xy+1}+\frac{xy}{4}=\frac{1}{xy+1}+\frac{xy+1}{4}-\frac{1}{4}\) 

           \(P\ge2\sqrt{\frac{1}{xy+1}\frac{xy+1}{4}}-\frac{1}{4}\left(AM-GM\right)\)   

                \(=1-\frac{1}{4}=\frac{3}{4}\)

Đẳng thức xảy ra khi a=b=c=1

Bình luận (0)
 Khách vãng lai đã xóa
Nguyễn Thị Kim Tuyến
Xem chi tiết
Nguyễn Linh Chi
20 tháng 11 2019 lúc 16:32

Câu hỏi của Phạm Trần Minh Trí - Toán lớp 9 - Học toán với OnlineMath

Em tham khảo.

Bình luận (0)
 Khách vãng lai đã xóa
Phạm Trần Minh Trí
Xem chi tiết
tth_new
20 tháng 11 2019 lúc 16:21

Áp dụng BĐT AM-GM: \(\frac{a^3}{\left(b+c\right)^2}+\frac{b+c}{8}+\frac{b+c}{8}\ge\frac{3}{4}a\)

Suy ra \(\frac{a^3}{\left(b+c\right)^2}\ge\frac{3a-b-c}{4}\)

Tương tự các BĐT còn lại và cộng theo vế ta được \(VT\ge\frac{a+b+c}{4}=\frac{3}{2}\)

Đẳng thức xảy ra khi a = b=  c = 2

Bình luận (0)
 Khách vãng lai đã xóa
tth_new
20 tháng 11 2019 lúc 16:31

Có cách UCT :)

\(P=\Sigma_{cyc}\frac{a^3}{\left(6-a\right)^2}\)

Xét BĐT phụ: \(\frac{a^3}{\left(6-a\right)^2}\ge a-\frac{3}{2}\Leftrightarrow\frac{27\left(a-2\right)^2}{2\left(a-6\right)^2}\ge0\)(luôn đúng)

Thiết lập tương tự 2 BĐT còn lại và cộng theo vế..

Bình luận (0)
 Khách vãng lai đã xóa
Vũ Bảo Lam
15 tháng 5 2020 lúc 22:48

Đẳng thức xảy ra khi a=b=c=2

Đó nhớ cho mình nha 

Bình luận (0)
 Khách vãng lai đã xóa
pham thi thu trang
Xem chi tiết
Tuyển Trần Thị
3 tháng 10 2017 lúc 20:49

ap dung bdt \(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\) 

\(\frac{1}{2a+b+c}=\frac{1}{\left(a+b\right)+\left(a+c\right)}\le\frac{1}{4}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)\)

\(\Rightarrow P\le\frac{1}{16}\left[\left(\frac{1}{a+b}+\frac{1}{a+c}\right)^2+\left(\frac{1}{a+b}+\frac{1}{b+c}\right)^2+\left(\frac{1}{b+c}+\frac{1}{a+c}^2\right)\right]\)

\(\Rightarrow16P\le\frac{2}{\left(a+b\right)^2}+\frac{2}{\left(b+c\right)^2}+\frac{2}{\left(a+c^2\right)}+\frac{2}{\left(a+b\right)\left(b+c\right)}+\frac{2}{\left(a+b\right)\left(a+c\right)}\)\(+\frac{2}{\left(b+c\right)\left(c+a\right)}\)

ap dung \(x^2+y^2+z^2\ge xy+yz+xz\) voi a+b=x, b+c=y, c+a=z

\(16P\le\frac{4}{\left(a+b\right)^2}+\frac{4}{\left(b+c\right)^2}+\frac{4}{\left(c+a\right)^2}\)

tiếp tục áp dụng bdt ban đầu \(\frac{4}{a+b}\le\frac{1}{a}+\frac{1}{b}\)

\(\Rightarrow\frac{1}{\left(a+b\right)^2}\le4.16.\left(\frac{1}{a}+\frac{1}{b}\right)^2\)

\(\Rightarrow16P\le\frac{1}{4}.16\left[\left(\frac{1}{a}+\frac{1}{b}\right)^2+\left(\frac{1}{b}+\frac{1}{c}\right)^2+\left(\frac{1}{c}+\frac{1}{a}\right)^2\right]\)

=\(\frac{1}{4}\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ac}\right)\)

tiep tuc ap dung bo de thu 2 ta co 

\(16P\le\frac{1}{4}.4\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)=3\)

\(\Rightarrow p\le\frac{3}{16}\)dau =khi a=b=c=1

Bình luận (0)
Phan Nghĩa
3 tháng 8 2020 lúc 21:02

Nguồn : mạng :V vào thống kê coi hìnholm.pn

Bình luận (0)
 Khách vãng lai đã xóa
Phú Nguyễn
Xem chi tiết
Lê Tài Bảo Châu
Xem chi tiết
Kiệt Nguyễn
17 tháng 10 2020 lúc 7:07

Ta có: \(0< a^2+b^2+c^2=3\Rightarrow a^2,b^2,c^2< 3\Rightarrow a,b,c< \sqrt{3}< 2\)

Xét bất đẳng thức phụ: \(2a+\frac{1}{a}\ge\frac{1}{2}a^2+\frac{5}{2}\)(*)

Thật vậy: (*)\(\Leftrightarrow\frac{\left(a-1\right)^2\left(2-a\right)}{2a}\ge0\)*đúng*

Áp dụng, ta được: \(P\ge\frac{1}{2}\left(a^2+b^2+c^2\right)+\frac{5}{2}.3=9\)

Đẳng thức xảy ra khi a = b = c = 1

Bình luận (0)
 Khách vãng lai đã xóa
Nguyễn Văn Khoa
Xem chi tiết
Upin & Ipin
20 tháng 5 2020 lúc 21:22

Dat \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x,y,z\right)\)

thi \(P= \Sigma \frac{z^2}{x+y} \geq \frac{x+y+z}{2} \) (1)

Mat khac co \(x+y+z=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=3\) (2)

Tu (1) va (2) suy ra \(P\ge\frac{3}{2}\).Dau = xay ra khi \(a=b=c=1\)

Bình luận (0)
 Khách vãng lai đã xóa
Lê Minh Đức
Xem chi tiết
Thắng Nguyễn
23 tháng 12 2016 lúc 20:29

Áp dụng BĐT AM-GM ta có:

\(6=2\left(\frac{a}{b}+\frac{b}{a}\right)+c\left(\frac{a}{b^2}+\frac{b}{a^2}\right)\)

\(\ge4+\frac{c\left(a^3+b^3\right)}{a^2b^2}\ge4+\frac{c\left(a+b\right)}{ab}\)\(\Rightarrow\frac{c\left(a+b\right)}{ab}\in\text{(}0;2\text{]}\)

Áp dụng BĐT Cauchy-Schwarz lại có:

\(P\ge\frac{\left(bc+ca\right)^2}{2abc\left(a+b+c\right)}+\frac{4}{\frac{c\left(a+b\right)}{ab}}\)\(\ge\frac{3c^2\left(a+b\right)^2}{2\left(ab+bc+ca\right)}+\frac{4}{\frac{c\left(a+b\right)}{ab}}\)

\(=\frac{\frac{3c^2\left(a+b\right)^2}{a^2b^2}}{2\left(1+\frac{ca}{ab}+\frac{bc}{ab}\right)^2}+\frac{4}{\frac{c\left(a+b\right)}{ab}}\)

\(=\frac{\frac{3c^2\left(a+b\right)^2}{a^2b^2}}{2\left[1+\frac{c\left(a+b\right)}{ab}\right]^2}+\frac{4}{\frac{c\left(a+b\right)}{ab}}\)

Đặt \(x=\frac{c\left(a+b\right)}{ab}\left(x\in\text{(}0;2\text{]}\right)\) khi đó ta có:

\(P\ge\frac{3x^2}{2\left(1+x\right)^2}+\frac{4}{x}\) cần chứng minh \(P\ge\frac{8}{3}\Leftrightarrow\left(x-2\right)\left(7x^2+22x+12\right)\le0\forall x\in\text{(0;2]}\)

Vậy \(Min_P=\frac{8}{3}\) khi a=b=c=2

Bình luận (0)
Lê Minh Đức
23 tháng 12 2016 lúc 22:37

Chỗ dùng cauchy- schwarz mình không hiểu lắm

Bình luận (0)
Truong Tuan Dat
Xem chi tiết
Trần Phúc Khang
12 tháng 5 2019 lúc 12:20

Dùng Buniacoxki

=> MinP=9 khi a=b=c

Bình luận (0)